Tracking Phishing Attacks Over Time

Qian Cui
University of Ottawa
Ottawa, Canada
gcui@uottawa.ca

Russell Couturier

CTO Forensics, IBM Security

U.S.A.

Guy-Vincent Jourdan
University of Ottawa
_ Ottawa, Canada
gjourdan@uottawa.ca

russ.couturier@us.ibm.com

ABSTRACT

The so-called “phishing” attacks are one of the important
threats to individuals and corporations in today’s Internet.
Combatting phishing is thus a top-priority, and has been the
focus of much work, both on the academic and on the indus-
try sides. In this paper, we look at this problem from a new
angle. We have monitored a total of 19,066 phishing attacks
over a period of ten months and found that over 90% of these
attacks were actually replicas or variations of other attacks
in the database. This provides several opportunities and
insights for the fight against phishing: first, quickly and effi-
ciently detecting replicas is a very effective prevention tool.
We detail one such tool in this paper. Second, the widely
held belief that phishing attacks are dealt with promptly is
but an illusion. We have recorded numerous attacks that
stay active throughout our observation period. This shows
that the current prevention techniques are ineffective and
need to be overhauled. We provide some suggestions in this
direction. Third, our observation give a new perspective
into the modus operandi of attackers. In particular, some
of our observations suggest that a small group of attackers
could be behind a large part of the current attacks. Taking
down that group could potentially have a large impact on
the phishing attacks observed today.

Keywords
Phishing Detection; Clustering

1. INTRODUCTION

So-called “phishing” has been defined as “a type of com-
puter attack that communicates socially engineered mes-
sages to humans via electronic communication channels in
order to persuade them to perform certain actions for the
attacker’s benefit” [18]. Although this definition is quite

(©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.

WWW 2017, April 3-7, 2017, Perth, Australia.

ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052654

Ce

667

Gregor V. Bochmann
University of Ottawa
Ottawa, Canada
bochmann@eecs.uottawa.ca

losif-Viorel Onut

Principal R&D Strategist, IBM
Centre for Advanced Studies

_ Ottawa, Canada
vioonut@ca.ibm.com

general, the focus is usually put specifically on phishing web
sites (e.g. [29]), which is our focus as well.

Phishing is an ongoing threat to individuals and to the
community at large. According to a recent report produced
by the FBI [9], from October 2013 to February 2016, phish-
ing scam caused at least $2.3 billion in damages, involving
17,642 businesses in more than 79 countries. What is more,
the Anti-Phishing Working Group (APWG, [3]) reports that
in the first quarter of 2016, the number of phishing attacks
increased by 250 percent when compared to the phishing
attacks in the last quarter of 2015 [5]. Many companies
have joined in the campaign against phishing. For instance,
Google maintains a blacklist of phishing sites and has built
a phish filter into its Chrome browser [29, 19]. Other com-
panies have been developing a variety of anti-phishing tools,
such as toolbars or browser extensions, to identify and block
phishing sites [32]. Companies such as IBM do offer tools
and services that include phishing prevention [16], and anti-
virus software such as Panda [24] and McAfee[22] now in-
clude some anti-phishing features.

Improving the accuracy and speed of phishing sites detec-
tion is very important. Academia has been working on this
for the last several years, working from two main angles: the
first approach is to find similarities between a phishing site
and the legitimate site that it mimics. The second approach
is to try to find intrinsic characteristics of phishing sites,
such as the presence of specific types of web forms, or some
unusual structures in URLs (see Section 5 for more details).
In this paper, we are following a different approach: we have
been monitoring a total of 19,066 confirmed phishing attacks
reported on PhishTank! to try to find commonalities be-
tween these attacks. To that end, we have defined a feature
vector based on the DOM of the web pages obtained from
these attacks, and we have then clustered together vectors
that are close to one another. We found that over 90% of
our phishing database ends up in “flagged clusters”, that is,
cluster with more than one attack in it. Moreover, we only
have 1,216 such flagged clusters. Testing our method with
24,800 legitimate sites only yields 20 false positive (0.08%).
Our method is thus extremely effective at detecting an at-
tack that happens to be a replica or a variation of another,
already known attack. We say that these phishing attack
instances belong to the same phishing class.

"https://www.phishtank.com/

A typical in-depth defense strategy against phishing con-
sists of a first line of fast filtering, which will flag some sites
as potential phishing sites, followed by a second line of much
slower, in-depth analysis to confirm that the flagged sites are
indeed attacks. Since we see that most of the new attacks
are variations of known ones, it shows that detecting such
replicas as an intermediary step is a sensible strategic move
that will free up a considerable amount of much needed re-
sources for the last step of in-depth analysis. Our results
have been confirmed on proprietary production data owned
by the security division of our partner IBM.

By clustering together all the known instances of an at-
tack over several months, we can also learn about how these
attacks are usually managed by the attackers. What we
have found is that a single attack class can last for a very
long time. We have examples of attack classes being live
for the entire duration of our database, ten months, and
they probably last much longer. We see that attackers are
moving these attacks between different domains, different
IP addresses and different URLs, but do not modify their
actual attacks very much at all. This shows that the very
short average lifetime of a given phishing site, about 10 hours
according to [4], does not fairly reflect the reality of these
attacks: if a given instance of a given attack is short-lived,
the attack class itself seems to be easily maintained alive by
the attacker. We have seen several attacks for which past in-
stances were directly blocked by a browser such as Chrome,
but newer instances of the same attack were not. It suggests
that the current prevention methods wrongly focus on these
instances of attacks and fail to address the core of the prob-
lem. The clustering method presented in this paper will help
with this situation, by protecting against future instances of
an attack once a single instance has been detected.

We also used our clusters to study possible connections
between attack classes: as explained, attacks that are in-
stances of a given class are moved across servers and across
IP addresses by the attackers. We looked at the set of IP ad-
dresses used by each of our clusters, searching for addresses
that would have been used at different times by different
clusters. What we found was that 1,259 IPs are reused in at
least one pair of clusters, and these 1,259 IPs represents di-
rectly about 50% of the recorded attacks. This suggests that
these attacks, albeit targeting completely different sites, do
share some common resources and are thus possibly oper-
ated by the same groups. Our study provides information
that could help identifying these groups and thus possibly
stop a large number of the current attacks.

The paper is organized as follows: In Section 2 we pro-
vide the definitions for our clustering approach. Then in
Section 3, we present the basic results of our experiments.
We discuss these results, and provide more analysis in Sec-
tion 4. We provide an overview of the literature in Section 5
before concluding is Section 6.

2. CONCEPTS AND DEFINITIONS

In this section, we introduce and discuss the various math-
ematical concepts that we have used in our analysis. It
should be noted that many different DOM comparison tech-
niques could have been used with probably similar results.
The one presented here was chosen because it is fast to com-
pute and yield good results.

668

2.1 Tag Vectors and Proportional Distance

Our goal is to be able to find attack instances that are
fairly similar to one another, with some level of flexibility
in the definition of similarity. In [31], the authors explain
that they have used a “Hash-based Near-Duplicate Phish
Detection” method that, in their case, finds that 72.67% of
their phishing site database are replicas from at least one
other site in that same database. This “hash-based” method
takes the HTML of the phishing page and removes all the
spaces from it. It also removes all the default values in all
INPUT fields, replacing these values by empty strings. The
resulting HTML is then hashed using SHA-1 [23].

We do not want to use a hash-based method, which are
very strict and fail to match pages that are very small varia-
tions of each other. Instead, we want to compare the struc-
ture of the DOMs, using criteria that are fast to compute.
Our idea is to compute what we have called the “tag vector”
of the phishing page.

We first define a corpus of HTML tags. We used the com-
plete set of HTML elements provided by the World Wide
Web Consortium [30], from which we have removed some
of the more common tags such as <body>, <head> and
<html>. We end-up with a list of 107 tags, which can be
fetched from http://ssrg.site.uottawa.ca/phishingdata.
We then define an arbitrary but fixed ordering of the tags in
the corpus, and we define a “vector” of integers of the size of
the corpus. For each DOM, we compute the corresponding
vector by counting how many times each tag of the corpus
appears in the “body” part of the DOM. As an example,
consider Figure 1, where two simple DOMs are provided.
If the corpus consists of the html tags <form> <p>
<hl> <button> <video> <input> <iframe> and <div>,
in that order, then the tag vector for the page p;1 is <1, 0,2
3, 1,1, 2,0, 4>, while the tag vector for the page ps is <1,
0,0 .,4,0,0,0,0, 6>.

body

div div
/ // body
div div hi hl hl video — T
/ 1\ div div
p p form / \\
l div div
input input div div form hl
button hl hi hi

(a) DOM of the page p1 (b) DOM of the page p2

Figure 1: Tag vectors

In order to compare two pages, we use what we call the
proportional distance between the tag vectors of the two
pages. Here again, we will use a fairly simple definition, in
which we will count the number of tags that appear a differ-
ent number of times in the two pages (in other words, the
number of indexes of the tag vectors that have a different
value). This simple count would have the tendency to gener-
ate greater differences for pages that are relatively complex
and that use a large variety of tags from the corpus, while
pages that only use a few of the tags would have smaller dif-
ferences. In order to alleviate this tendency, we will divide
the number of differences by the number of tags that appear
in at least one of the two pages.

Formally, for all integers and y, we define the Hamming
Distance D(z,y) = 1 if 2 # y and D(z,y) = 0 otherwise.
We define L(z,y) = 1if 2 # 0 OR y # 0 and L(z,y) =0

otherwise. Let t; and t2 be two non-null tag vectors over
the same corpus of size n. We define the proportional
distance? PD(t1,t2) between t1 and t2 as follows:

_ S0, D(tafi], t2[i)
N AGRAT)

As an example, consider the two vectors from Figure 1:
seven of the nine possible tags of the corpus are used by at
least one of the two vectors, and only the first one, <form>,
appears the same number of times in both vectors, so the
PD(p1,p2) = 6/7 = 0.85, which indicates a large difference
between the two pages.

PD(t1,t2)

(1)

2.2 Clustering Algorithm

The goal of our clustering is to group together in the same
cluster the pages that have relatively similar tag vectors,
since they are deemed to be similar to one another. We
believe that a given site can be slightly modified a great
number of times and re-published after each modification.
It is thus unlikely that there is some kind of a “master” site
that is used as the source for each iteration. Instead, we
are probably looking at long sequences of modifications, in
which each new instance is fairly similar to the instance it is
based upon, but after a while we may end-up with instances
that are fairly far apart. We thus avoided to use a centroid-
based clustering algorithm. Instead, we use a hierarchical
clustering approach to group together vectors that have at
least one other vector which is relatively similar in the same
cluster. This has the advantage of always producing the
same output for the same input, regardless of the order in
which the vectors are added to the model. This is a signif-
icant advantage in our context, since the database is going
to evolve overtime, as new phishing sites are being discov-
ered. These new sites can be added to the model in a greedy
fashion, without having to recompute the model. Note that
when a new site is added to the set, two clusters can end-up
being merged together. A straightforward greedy algorithm
was used in our experiments, with an overall complexity of
O(n?) for n vectors. A more efficient method using “proto-
types” for the clusters [27] was implemented for production,
but the details are out of the scope of this paper.

As usual with clustering algorithms, our method is based
on some threshold H. A common and intuitive definition
of a “good” clustering threshold is a threshold that yields
clusters that are both compact and far away from each other,
so this is what we also aim for here. We define a quality
of clustering using the average proportional distance of
vectors inside a cluster. We average this value, and divides it
by the smallest proportional distance between two vectors in
any two clusters. The numerator evaluates the compactness
of the clusters (the more compact the clusters, the smaller
the value) while the denominator evaluates how far apart
clusters are: the further apart they mutually are, the larger
the value. Thus, a smaller value for our quality of clustering
is better.

Formally, given C;, C C' a subset of the set of clusters
C' having more than one element, we define the quality of
clustering as follows: for a given cluster C; € C) having
n; > 1 elements, we define the compactness of the cluster
C; as Comp(C;) = ﬁ Y ovec; yeo; any PD(@,y), and

2The proof that this is a mathematical distance can be found
on http://ssrg.site.uottawa.ca/phishingdata.

669

the compactness of the set of clusters Ci as Comp(Cy)
IC}ﬁ >c,ec, (Comp(Ci)). We also define the minimal dis-
tance between two clusters C; and C; as Min(C;, C;) =
mingec; yec; PD(x,y) and the minimal distance in a set
of cluster C' as Min(C) = minc, c;ec.c,2c; Min(Ci, Cj)
The Quality of Clustering QC(C) of C is defined as

_ Comp(Cy)

Qole) = Min(C)

(2)

3. EXPERIMENT

We are now reporting our basic results, starting with a
description of our database.

3.1 Legitimate- and Phishing-Sites Database

We have used the community-driven portal PhishTank to
compile our database of phishing attacks instances URLs.
We have collected a raw list of 21,303 “verified” phishing sites
by downloading PhishTank’s archive daily between January
1st and October 5th, 2016%. We also recorded the submis-
sion date of each attack instance. For each of these URLs,
we automatically attempted to fetch the DOM by sending a
Web crawler to the URL. We also gathered the web server’s
IP address. Note that in some cases, the initial URL re-
turned a redirection to another URL, in which case we re-
cursively followed redirections until reaching the actual al-
leged phishing site. The data reported is the data collected
after following these redirections.

We were unable to reach 2,237 of the 21,303 URLs fetched
from PhishTank, for a variety of reasons including 350 URLs
which returned a 400-level HT'TP error code when accessed,
59 phishing sites that were identified has having been taken
down, usually (but not always) by the host provider of these
sites, and 1,828 attacks instances there were empty or failed
to load in our crawler. We thus ended up with 19,066 valid
URLs.

Detecting double entries in the dataset in not straight-
forward. They are due to the same attack instance being
reported more that once to PhishTank. The corresponding
URLs might have some variations to them (e.g. they may
contain the email address of the targeted victim), and each
time the page is loaded, it may also have some variations
(e.g. an embedded tracking token). In order to detect such
duplicates, and following the suggestions provided in [31],
we have looked at the DOM of each alleged phishing attack
instance, and removed all the spaces from these DOMs, as
well as all the defaults values in every INPUT fields, re-
placing these values by empty strings. We then computed
the SHA-1 hash of the resulting DOMSs, to find phishing
site with the same hash that were hosted on the same IP
address. We call these “hash-duplicates”. We need to dis-
tinguish a single attack reported twice from an attack re-
launched by the attacker, and reported again. To attempt
to distinguish between the two situations, we considered that
hash-duplicates that were reported within a given number
of days of each other were true hash duplicates (same at-
tack instance reported twice to PhishTank), while the hash
duplicates reported far enough apart from each other (and
that were indeed live at the time of the report) were in-
stance of attacks being relaunched by the attackers. We

3See https://www.phishtank.com/stats.php for Phish-
Tank’s latest stats.

Number of URLs
Initial phishing list 21,303
Unreached phishing 2,237
Actual phishing list 19,066
Hash-duplicate 6,207
Phishing, no hash-duplicates 12,859
Legitimate sites list 24,800

Table 1: Phishing and legitimate databases.

chose 14 days for that period, which seemed to give enough
time for the community to report an attack. This gave us
6,207 hash-duplicates in our database. A longer period did
not significantly impact this results (20 days yields 6,441
hash-duplicates, and 30 days 6,650 hash-duplicates). In the
following, we report our finding both with hash-duplicates
included (19,066 URLs) and excluded (12,859 URLS).

In order to compare the result of our clustering algorithm
on phishing sites and on legitimate sites, we have also gath-
ered a database of non-phishing websites. For that pur-
pose, we used the portal Alexa*, which monitors web traffic
and provides lists of the most popular websites. We fetched
24,800 legitimate sites, including 9,737 URLs from a series of
Alexa free “top 500” most popular site by countries [2] and
another 15,063 URLs randomly selected from the Alexa’s
top 100,000 to 460,697 web sites.

All of our datasets, URLs and DOMs for phishing and
valid sites have been made available on http://ssrg.site.
uottawa.ca/phishingdata. The data is recapped in Ta-
ble 1.

3.2 Optimal Threshold

To choose the value of the clustering threshold, we have
computed the threshold that will provide the minimal (i.e.
the best) quality of clustering as defined in Section 2.2. In
order to evaluate how stable this value would be overtime,
we have decided to compute it over 4 different, increasing
periods, using our phishing site database gathered from Jan-
uary 1st to March 1st, then from January 1st to May 1st,
then from January 1st to July 1st and finally using the whole
dataset, from January 1st to October 5th. The results are
provided in Figure 2. In all four cases, we find the exact
same threshold, 0.32, was minimizing the quality of clus-
tering®, which is at least an indication that this optimal
threshold value can be relatively stable overtime.

3.3 Clustering Results

Our main results are shown in the Table 2: we find that
our dataset of 19,066 phishing URLs only generates 3,796
different vectors, which in turn yield 2,831 clusters over-
all (that is, 2,831 attack classes). 1,216 of these clusters
contain more than one URLs (we call these “flagged clus-
ters” in the table). Of course, the set of 12,859 URLs with
hash-duplicates removed generates exactly the same vectors
and clusters by definition. In terms of hashes as defined
in [31], we obtain 8,467 unique hashes, which means a col-
lision rate of 34.2% with — or 55.6% without — hash dupli-
cates, significantly lower than the 72.7% rate reported in
2011 [31]. The most important result is that 17,451 (resp.

‘http://www.alexa.com/

SWhen several thresholds minimized QC, we selected the
the smallest one.

670

0.65
1) 0.60

(¢}

0.55

0.60

Qc

¢

0.55

0.65

o 060

0.55

0.62
0.60

(@]
G 0.58

0.54

Optimal Threshold, From 2016-01-01 to 2016-03-01

Optinial Thresh

{

old/0.32

0.15 0.20 0.25 0.30

Pronortional Distance

Optimal Threshold, From 2016-01-01 to 2016-05-01

0.35

Optikpal Thresh

old/0.32

0.15 0.20 0.25 0.30

Pronortional Distance

Optimal Threshold, From 2016-01-01 to 2016-07-01

0.35

Opti Thresh

4

old 0.32

0.15 0.20 0.25 0.30

Pronortional Distance

Optimal Threshold, From 2016-01-01 to 2016-10-05

0.35

Optimal

{

0.20 0.25 0.30

Pronortional Distance

0.35

Figure 2: Optimal threshold computation over different

time periods.

Phishing Sites Database Size
of phishing attack instances 19,066
of phishing attack instances, no hash-duplicates | 12,859
of unique hash 8,467
of unique vector 3,796
of clusters (phishing attack classes) 2,831
of flagged clusters 1,216
Legitimate Sites Database Size
of legitimate 24,800
of unique hash 24,770
of unique vector 24,655
Clustering Results Size | Percentage
of phishing in flagged clusters 17,451 91.53%
of phishing, no hash-duplicates 11,244 87.44%
in flagged clusters

of legitimate in phishing clusters 20 0.08%

Table 2: Databases details (top) and clustering results
(bottom).

11,244) of the 19,066 (resp. 12,859) phishing URLs end
up in a flagged cluster, which means that 91.53% (resp.
87.44%) of our entire phishing database is made of repeated
attacks over our observation period. Figure 4 shows how
this evolves as the database grows: a small window of only
one month of recorded phishing attacks already yield good
results, with over 75% of repeat attacks, and this threshold
grows throughout the eight months duration of our exper-
iment, so this suggests that the percentage will eventually
be even higher. In Table 3, we show the targeted brands for
the top 10 clusters after removing hash-duplicates. All but
two have a single, well identified target. The fifth cluster
targets most major email providers at once, while the sev-
enth is a generic email login with no specific brand specified.
Note that the same target appears more than once, because
different attacks are targeting these same sites.

In our database of 24,800 legitimate sites, we do find a
handful of hash collisions (0.12%) as well as some vector
collisions (0.58%) which are due to having several country-
specific versions of the same site in our database. Only 20
of these sites end up in one of the 2,831 phishing clusters, a
false positive rate of only 0.08%. The main reason for these
false positives is that some phishing sites are a copy of the
legitimate site (See for example Figure 3 (a) and (b)). It is
actually remarkable how infrequently this situation occurs.
It shows that phishers do not tend to copy directly the site
they are attacking. The reason for this is probably because it
makes it particularly easy to detect and filter the attacks [8,
26]. In practice, we could easily reduce this false positive
rate even further, e.g. by identifying the legitimate sites
being targeted [20] and white-listing them, but this is out of
the scope of this paper.

These results show that our clustering method is quite ef-
fective at finding clusters of phishing sites that are related
to one another, and that our method yields a very low and
sustainable false positive rate. This also shows that a sim-
ple, hash-based method such as the one suggested in [31]
would in fact miss many of these replicas. We will discuss in
detail the implications of these results in terms of phishing
protection in Section 4.1, but it is important to understand
that the fact that our method detected about 87.44% of the

671

Targeted Brand # of Phishing Attack Instances
Gmail 871
Dropbox 373
Dropbox 367
PayPal 323
Multiple mail login 272
Yahoo 261
Generic mail login 258
Dropbox 252
AOL 212
Gmail 179

Table 3: Targets of top 10 clusters

At USAA, you're more than
an auto policy number.

p ‘| .L; . éu: “:./

W Al oiW

(b) Phishing site

(a) Legitimate site

Figure 3: Example of a false positive.

Percent of phishing sites in "flagged” clusters

100%
00% g6.370, B851% 89.13% 80.86% 90.20% 90.16% 90.70% 91.53%
85.450% 86.37%

86.57% 87.44%
80% 83.150% 83.86% 84.77% 85.59% 85.67% o

76.950 /8-80%
70%

60%

50%

2016-02-01 2016-04-01 2016-06-01 2016-08-01

& % of phishing sites, # % of phishing sites
no hash-duplicates

2016-10-01

Figure 4: Percentage of duplicates over time.

phishing database does not mean at all a false negative rate
of 12.56%. We are detecting replicas, and it is perfectly rea-
sonable to assume that phishing sites in unflagged clusters
do not have replicas (at least not in our database). The goal
is not to detect a new phishing site, but a new variation of a
known one. As we do not know precisely how many of these
sites do have replicas in our database, we unfortunately can-
not report the number of false negatives in our experiment,
but this number is probably much lower than 12.56%.

Note that we ran similar experiments with proprietary
live data from our partner IBM and we obtained the same
results. This database is, however, confidential, so we cannot
share it as we have done with our own database.

4. ANALYSIS AND DISCUSSION

4.1 Phishing Sites Detection Tool

To understand why our tool will play an important role
in a phishing protection strategy despite the fact that it
does not detect new phishing sites but rather new iterations
of known ones, one has to consider how a typical realistic
corporate in-depth anti-phishing strategy works. In such a
context, a steady stream of tens of thousands, if not millions
of daily URLs has to be processed to assess and blacklist
phishing attacks in near-real-time. This is normally done in
two steps: a first level of fast filtering is applied to remove
the vast majority of the URLs, which are benign. The re-
sulting, much-smaller set of potential phishing sites is then
analyzed using time-consuming methods such as the ones
reviewed in Section 5. This second step is slow, often re-
quires an actual in-browser rendering of the web sites, and
sometimes even requires human intervention. It takes sec-
onds to minutes to process a site at that stage. The number
of sites reaching this second step is thus of importance: for
the defense to be effective, that number must be as low as
possible.

The results of Section 3.3 show that today, about at least
90% of the attacks are repeats of previous attacks. It means
that at the second step above, the vast majority of the time
is spent re-confirming a known attack, whereas a technique
such as ours can be used to automatically find many, if not
all of these repeats, with almost no false positives. What is
more, our clustering method can assess a site quickly: with a
non-optimized code, on our database of almost 20,000 URLs
we process a site in an average of 44 milliseconds.

Our tool is thus an effective and important intermediary
step in the defense strategy: the list of potential attacks that
have been flagged by the first step is then analyzed by our
method. Based on our results, as it stands about 90% of
the actual attacks in that list will automatically be removed
(and the corresponding vectors immediately added to our
clusters). A much reduced list is then passed on the next
and final step, where new phishing attacks are evaluated
using slower methods. When a new attack is confirmed at
this last step, this information is immediately feed back to
our system, and the corresponding cluster is created. From
that point on, all the incoming variations of that new attack
will be automatically removed and will not reach the last
step. Adding that intermediary step can be the difference
between a system that can cope with the kind of flow of
incoming attacks that we see today and a system that cannot
do it.

672

90%
80%
70%
60%
50%
40%
30%
20%

0,

> (ob\ %b\ \/'1,\ © \/éb\ > (ﬂy\ ri,;l,\ ,1329\

'\, ; :

& ¢ R &

A\
N AR RN \

o
< & &

% of clusters M % of attack instances
Figure 5: Lifespan of clusters and attack instance, in days.

35%

30%

25%

20%

15%

10% ‘

| {1

0% TTII.
DB O DD DD O S

FPF e CSFS

W % of clusters

Figure 6: Average time between attack instances, in days.

Attackers can attempt to counter our tool by making it
more difficult to detect re-publishing of an attack. Our cur-
rent approach is not difficult to defeat in that regard, al-
though it currently works well. However, the actual method
used to detect resubmission can be adapted, and detecting
similarities between DOMs is an active field of research, out-
side the scope of this paper. Even if the percentage of caught
repeat attacks decreases, the ones detected will still be a net
gain for the defense, and this detection step should therefore
be part of the strategy as long as attackers repeat attacks.
The ultimate goal of that step is to prevent attackers from
relying on existing attacks, and force them to create new
ones every time, driving up their cost and reducing their
efficiency.

4.2 Lifespan of Phishing Sites

One cluster represents one phishing attack class — loosely
speaking, one phishing site —, which is made of several at-
tack instances (actual mailing campaigns trying to drive vic-
tims to the attack URL). We investigate here the lifespan
of these attacks in our database, using the dataset without
hash-duplicates. The lifespan is defined as the duration be-
tween the first and the last observed attack instance®. The
main results are shown in Figure 5: the vast majority of the
attack classes, around 80% of the clusters, are active for less
than one month. The long-lasting attack classes, however,
can stay active anywhere between 2 months to the entire

SKeep in mind that we cannot really tell when the attack
observed at the beginning of our observation period actually
started, and similarly at the end of the ten months.

300
250
200
é’ 150
cﬁ"
50 ”, e .
o .
s ’Q‘ ot ’
2016-01-01 2016-02-26 2016-04-22 2016-06-17 2016-08-12 2016-10-07
HIP #domain vector
(a) Cluster with longest lifespan
700
600
500
400
0
2 300 R i
200 . -
PECE S, * *
0 T U v v
2016-01-01 2016- 02 26 2016-04-22 2016-06-17 2016 08 12 2016 10-07
WP ¢domain - vector

(b) Cluster with the most phishing attack instances

Figure 7: Number of vectors, IP addresses and domains
used in sample clusters over time.

10 months of our observation timeframe. In general, the
average lifespan of a cluster in our database is 25 days. If
we look at the actual attack instances on the other hand,
we have a bimodal distribution: the 80% of clusters that
are active for less than one month only account for about
30% of the attack instances, while about 35% of the attack
instances are on the other end of the spectrum, in clusters
lasting 32 weeks and more. This shows that, contrary to
what was previously assumed, actual attacks can last for a
long time through many short lived attack instances (attack
instances are blocked after about 10 hours according to [4]),
and the majority of the instances are part of long-lasting
attack classes. Figure 6 shows how often attack instances
are observed in the 856 clusters in our database that do last
more than one day: we see that these long-lasting clusters
are active throughout their lifespan, with 33% having on av-
erage more that one attack instance per week, and almost
half having on average more than one attack instance per
couple of weeks.

In order to understand how these attacks evolve and sur-
vive such a long time, we look at the distribution of vectors,
IP addresses and second-level domain names’ over time.
Figure 7 shows this for two sample clusters: one of the
longest lasting ones in our database and the one with the
most attack instances (871 phishing attacks). In this figure,
numbers are cumulative, and reuse of a vector/IP/domain
is indicated by another dot at the level at which that vec-
tor/IP/domain was first observed. As can be easily seen
here, attackers do tend to change domains most often, with
IP addresses a close second, but the actual vectors do not
change nearly as much. If we look at the complete set of

"When a country-code domain name is used, we look at the
third-level domain names, so www.example.com is “example”
while www.CountryExample.co.uk is “CountryExample”.

673

clusters lasting more than one day, the ratio vectors/IPs is
0.45 and the ratio vectors/domains is 0.36. This proves that
what attackers do when they relaunch an attack is to find
a different domain for the attack, and very often a different
host for it. But they seldom invest time to modify substan-
tially the site itself. This suggests that it is costlier for them
to modify the attack, let alone to create a new one, when
compared with using a new domain or a new host.

One of the salient points of this analysis is that a given
phishing attack class can have a long lifespan, through thou-
sands of “instances” of this attack. In this situation, it is not
surprising that trying to protect against actual instances of
an attack is not a good, effective strategy. It is a losing
game since attackers can simply launch new instances at
very low cost. What might be costlier for the attackers is
to create new attacks. It is thus unfortunate that most of
the prevention techniques in use today are really based on
instance-detection. It is also what creates the illusion that
the prevention is effective, whereas it is only effective at re-
moving ephemeral attack instances. A much more effective
strategy is to target the actual attack itself. In that con-
text, our clustering method is a step in the right direction:
once an instance is detected, a cluster is created for the ac-
tual attack, and new forthcoming instances will be detected.
This suggests that Web browsers should be enhanced with
solutions such as ours to be more effective in phishing pre-
vention.

4.3 Linking Attacks Together

We have seen that attack instances can be clustered in
such a way that all the instances of the same attack are in
the same cluster, an attack class, showing few variations of
the resulting DOM, and more variations in terms of domain
names and ultimately IP addresses of the machine serving
the attack. The next question we investigate is to try to
find common features across clusters, and specifically shared
IP addresses. If two attack classes are totally independent,
they have no particular reasons to be hosted by the same
IP address at any time. On the other hand, if the same
group is behind two different attack classes (that is, attacks
targeting two different sites, and thus creating two separated
clusters in our system), it is quite possible that the same IP
address will be used at different points in both attack classes,
because that IP address is one of the possible hosts for that
group.

The first observation is that only 5,267 IP addresses have
been used to host the 19,066 phishing instances in our data-
base (resp. 12,859, without hash-duplicates), proving that
reuse is indeed occurring. For 1,807 of these IP addresses,
the reuse occurred for different instances of the same attack
class (in other words, these IP addresses appeared multiple
times in the same cluster). This type of reuse is probably to
be expected, since whatever group is behind an attack class
knowns the IP addresses that have been used in the past,
and might use them again for new instances of the attack
class. However, 1,259 of the 5,267 IP addresses in our data-
base (about 24%) appear in more than one cluster, and thus
are reused across different attack classes. These 1,259 IP ad-
dresses alone appear in 1,289 clusters — that is about 46% of
the cluster — and represent 9,564 (resp. 6,328, without hash-
duplicates) attack instances — about 50% (resp. 49%) of the
recorded attack instances. If we consider the entire span of

the clusters involved in these shared IP addresses, we find
that 15,247 (resp. 8,333) of the attack instances are linked
to this situation — that is 80% (resp. 65%) of the attacks
instances. This does suggest some commonalities between
these different attack classes. It is of course difficult to be
sure that shared IP addresses means a common attacker.
One other possible explanation would be that independent
attackers use the same “service” to acquire vulnerable ma-
chines, for example a fast-flux network service [15]. Finding
this out will require further research, although it can already
be pointed out that if we are looking at independent attack-
ers sharing a common service, then taking down that par-
ticular service will also significantly disrupt the landscape of
attacks, at least for the short term.

S. RELATED WORKS

There exists a significant body of academic work focusing
on phishing sites detection. Two main approaches seem to
be followed: on the one hand, one can identify a phishing
site by comparing it to the legitimate site being targeted.
On the other hand, one can instead find some intrinsic char-
acteristics of the phishing sites themselves. Most of the pub-
lished literature falls into one of these two categories, with
some papers advocating for a combined strategy which may
borrow ideas from both approaches.

In the category of the academic papers trying to detect
phishing sites by comparing them with their legitimate tar-
get, Zhang et al. [33] propose a content-based method using
a Term Frequency and Inverse Document Frequency (TF-
IDF) analysis to identify the phishing target. The keywords
extracted by the TF-IDF algorithm on a given page are sub-
mitted to search engines such as Google to find out the
possible targets of the phishing attack. They report 89%
true positive and 1% false positive on a database of 100
phishing sites and 100 legitimate sites. Rosiello et al. [28]
propose a method based on the layout similarity between a
phishing site and its target. Their analysis is based on the
comparison of the DOM trees. Chen et al [7] also compare
the visual similarity of the phishing site and its target, ap-
plying Gestalt theory on the image screenshot of the sites.
Afroz et al. propose “PhishingZoo” which uses the profiles
of the targeted sites appearances to detect phishing sites [1].
Wenyin et al. [20] propose a method using embedded links:
a Web graph of links is built and the so-called “parasitic
coefficient” is used to measure the relationship between the
phishing sites and their targets. In this paper, a 99.67% true
positive rate and a 0.5% false positive rate is reported on a
database of 3,374 phishing sites and 1,200 legitimate sites.
Ramesh et al. [26] also look at the hyperlink relationships
between phishing sites and their targets. They report an ac-
curacy rate of 98.95% and a false positive rate of 1.2% on a
database of 10,005 phishing sites and 1,000 legitimate sites.
Some authors also report good results while focusing on very
specific characteristics of the sites, such as the favicon [12]
or the site’s logo [6].

In the category of the academic papers looking at iden-
tifying phishing site directly, Garera et al. [10] focus on
the pattern sometimes found in the URLs of phishing sites.
They were able to obtain a true positive rate of 95.8% and
a false positive rate of 1.2% using a database of 1,245 phish-
ing sites and 1,263 legitimate sites. Ludl et al. [21] created
a decision tree based on 18 features taken from the URLs
as well as from the site’s HTML. They report a true posi-

674

tive rate of 83.09% and a false positive rate of 0.43%, using
a database of 4,149 legitimate sites and 680 phishing sites.
More recently, Xiang et al. [31] propose CANTINA+ based
on a machine learning framework using a set of 15 features.
They report a 99% true positive rate and 0.4% false posi-
tive rate, using a database of 8,118 phishing sites and 4,883
legitimate sites. Gastellier-Prevost et al. propose a method
based on 20 heuristic tests on the site’s URL and html [11].
Their experiments yield a true positive rate of 98.0% and
a false positive rate of 2.0%, using 500 legitimate sites and
730 phishing sites. He et al. select 12 features to reach a
97.33% true positive rate and a 1.45% false positive rate with
a database of 200 legitimate sites and 325 phishing sites [14].
Gowtham et al. do extend [14] to 15 features, and report a
99.8% true positive rate and a 0.4% false positive rate using
1,764 phishing sites and 700 legitimate ones [13].

Some researcher have also proposed an evaluation of popu-
lar anti-phishing tools. Zhang et al. [32] provided an analysis
of ten popular anti-phishing tools using 516 legitimate sites
and 200 phishing URLs, showing many weaknesses in these
tools. More recently, Liang et al. [19] reverse-engineered the
anti-phishing mechanism built into the Chrome browser and
showed that they were able to evade detection after some mi-
nor modifications to the phishing sites. Prakash et al. use
a blacklist of known phishing sites that is used as a basis
to decide if a site is legitimate or not [25]. They report a
true positive rate of more than 97% and a false negative
rate of less than 5%, using a database of 32,000 phishing
sites and 120,000 legitimate sites. Jain et al. propose a
method using a white-list of legitimate sites accessed by in-
dividual users [17]. Their experiments show a true positive
rate of 86.07 % and a false positive rate of 1.48%, with 1,120
phishing sites and 405 legitimate sites. A general survey on
phishing protection is available in [18].

To the best of our knowledge, the only work similar to ours
is the discussion provided in [31] regarding the duplicates in
their database. As shown previously, our solution is very
significantly more effective at flagging repeated publications
of the same phishing attack.

6. CONCLUSION

In this paper, we have demonstrated that a common be-
havior of attackers using phishing sites is to repeatedly re-
publish their attacks, using different domain names, different
hosts and sometimes some minor modifications, probably as
a way to get around the very short average lifetime of a
given phishing site, about 10 hours according to [4]. This
provides an opportunity to detect these “replicas” by com-
paring new attack instances with previously known ones.
We have shown that methods based simply on hashes of the
DOM, as suggested in [31], are not flexible enough and fail
to detect many of the replicas. We have introduced a sim-
ple method which computes a vector counting the number
of different HTML tags used in the DOM of the attacks.
We have defined a distance between these vectors, and used
that distance to cluster together sites with a distance lower
than a given threshold. Our clustering method puts together
vectors if their distance is closer than the threshold. These
clusters are thus not centroid based, and accommodate long
strings of successive modifications. Our method is deter-
ministic, which means that the clusters can be iteratively
built over time. Clusters coming from different phishing site
databases can be combined and made publicly available.

Our tests show that a very large number of newly dis-
covered phishing attack instances today would be caught by
our method: about 90% of reported phishing sites are in
fact replicas of already known phishing sites, and can be
flagged immediately by our tool. What is more, the level
of false positive it very low at 0.08%. This shows that the
method presented here is an effective tool to add to a phish-
ing defense strategy, as a preprocessing step to weed-out a
large number of new phishing attack instances, dramatically
reducing the load on the time-consuming back-end tools in
charge of finding and confirming new attacks. This tool is
meant as an addition to such a defense mechanism, and not
a replacement of the existing tools. It is, however, a nec-
essary improvement to prevent the time-consuming step of
new attack detection from being overwhelmed by the sheer
volume of new attack instances recorded today.

Although our clustering method is today quite effective,
there is no doubt that as it gets deployed in corporate envi-
ronments, attackers will attempt to defeat it by modifying
their attack instances more thoroughly. The overall defense
scheme will simply have to be adapted with more intelli-
gent ways of detecting different instances of the same at-
tack. The real novelty here is to compare an attack with
other known attacks, instead of with the targeted legitimate
site. It should be noted that the current body of work that
detects a phishing attack by comparing it to its target could
probably easily be adapted to compare attacks against other
attacks, as we do here.

We have also shown that long-lasting attacks survive cur-
rent prevention methods by re-launching very similar attacks
on new domains and on new servers, possibly after some mi-
nor variation of the DOM. Current prevention methods aim
at identifying and black-listing attack instances, instead of
the attack classes. This is a losing strategy, easily escaped
by the attackers, and a strategy that provides a false sense
of efficiency. Instead, moving forward, anti-phishing defense
strategies should focus on the actual attack classes behind
the attack instances, forcing attackers to invest more be-
tween each iteration of their attacks. The method presented
here is one such strategy. Once an attack instance is identi-
fied, the entire attack class can be neutralized.

Finally, we show that a large percentage of the phishing
attacks recorded today do share some common resources.
This suggest that it might be possible to significantly lower
the number of attacks by preventing some active groups from
operating, or by taking down some popular “services”. Our
data and our analyses can be used as a starting point to
identify such groups or such services. Our entire dataset is
freely available for further research on http://ssrg.site.
uottawa.ca/phishingdata.

Acknowledgements

This work is supported by the IBM® Center for Advanced
Studies and the Natural Sciences and Engineering Research
Council of Canada (NSERC).

675

7. REFERENCES

[1] S. Afroz and R. Greenstadt. Phishzoo: Detecting
phishing websites by looking at them. In Semantic
Computing (ICSC), 2011 Fifth IEEE International
Conference on, pages 368-375. IEEE, 2011.

Alexa. Top 500 Sites in Each Country.
http://www.alexa.com/topsites/countries.
Anti-Phishing Working Group. Anti-phishing working
group home page. http://www.antiphishing.org/.
Anti-Phishing Working Group. Global Phishing
Report 2H 2014. http://docs.apwg.org/reports/
APWG_Global_Phishing_Report_2H_2014.pdf.
Anti-Phishing Working Group. Phishing Activity
Trends Report 1st Quarter in 2016.
http://docs.apwg.org/reports/apwg_trends_
report_ql_2016.pdf.

E. H. Chang, K. L. Chiew, S. N. Sze, and W. K.
Tiong. Phishing detection via identification of website
identity. In 2018 International Conference on IT
Convergence and Security, ICITCS 2013, pages 1-4.
IEEE, 2013.

T.-C. Chen, S. Dick, and J. Miller. Detecting visually
similar web pages: Application to phishing detection.
ACM Trans. Internet Technol., 10(2):5:1-5:38, June
2010.

R. Dhamija and J. D. Tygar. The battle against
phishing. In Proceedings of the 2005 symposium on
Usable privacy and security - SOUPS 05, number
July, pages 77-88, New York, NY, 2005. ACM.

FBI. FBI Says $2.3 Billion Lost to Fake CEO Phishing
Scams. https://www.fbi.gov/phoenix/press-
releases/2016/fbi-warns-of-dramatic-increase-
in-business-e-mail-scams.

S. Garera, N. Provos, M. Chew, and A. D. Rubin. A
framework for detection and measurement of phishing
attacks. In Proceedings of the 2007 ACM workshop on
Recurring Malcode - WORM 07, pages 1-8, New
York, NY, 2007. ACM.

S. Gastellier-Prevost, G. G. Granadillo, and

M. Laurent. Decisive heuristics to differentiate
legitimate from phishing sites. In Network and
Information Systems Security (SAR-SSI), 2011
Conference on, pages 1-9. IEEE, 2011.

G.-G. Geng, X.-D. Lee, W. Wang, and S.-S. Tseng.
Favicon - a clue to phishing sites detection. In eCrime
Researchers Summit (eCRS), 2013, pages 1-10, Sept
2013.

R. Gowtham and I. Krishnamurthi. A comprehensive
and efficacious architecture for detecting phishing
webpages. Computers € Security, 40:23-37, 2014.

M. He, S.-J. Horng, P. Fan, M. K. Khan, R.-S. Run,
J.-L. Lai, R.-J. Chen, and A. Sutanto. An efficient
phishing webpage detector. Expert Systems with
Applications, 38(10):12018-12027, 2011.

T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling.
Measuring and detecting fast-flux service networks. In
NDSS, 2008.

IBM. Trusteer is now part of ibm. https://www—
01.ibm.com/software/security/trusteer/.

(10]

(11]

(15]

(16]

(17]

20]

(21]

A. K. Jain and B. Gupta. A novel approach to protect
against phishing attacks at client side using
auto-updated white-list. FURASIP Journal on
Information Security, 2016(1):1-11, 2016.

M. Khonji, Y. Iraqi, and A. Jones. Phishing detection:
A literature survey. IEEE Communications Surveys
Tutorials, 15(4):2091-2121, Fourth 2013.

B. Liang, M. Su, W. You, W. Shi, and G. Yang.
Cracking Classifiers for Evasion : A Case Study on the
Google ’ s Phishing Pages Filter. In Proceedings of the
25th International Conference on World Wide Web
(WWW ’16), pages 345-356, Montréal, QB, 2016.

W. Liu, G. Liu, B. Qiu, and X. Quan. Antiphishing
through Phishing Target Discovery. IEEE Internet
Computing, 16(2):52-61, 2012.

C. Ludl, S. McAllister, E. Kirda, and C. Kruegel. On
the Effectiveness of Techniques to Detect Phishing
Sites. In Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 20-39. Springer Berlin
Heidelberg, 2007.

McAfee. Phishing protection. https://home.mcafee.
com/advicecenter/?id=ad_phishing&ctst=1.
National Institute of Standards and Technology
(NIST). Secure Hash Standard. Federal Information
Processing Standards Publication 180-1., 1995.

Panda Security. Phishing: personal data theft.
http://www.pandasecurity.com/canada-eng/
homeusers/security-info/cybercrime/phishing/.

P. Prakash, M. Kumar, R. R. Kompella, and

M. Gupta. Phishnet: predictive blacklisting to detect
phishing attacks. In INFOCOM, 2010 Proceedings
IEEE, pages 1-5. IEEE, 2010.

676

[26]

27]

28]

29]

32]

(33]

G. Ramesh, I. Krishnamurthi, and K. S. S. Kumar.
An efficacious method for detecting phishing webpages
through target domain identification. Decision Support
Systems, 61(1):12-22, 2014.

K. Rieck, P. Trinius, C. Willems, and T. Holz.
Automatic analysis of malware behavior using
machine learning. Journal of Computer Security,
19(4):639-668, Dec 2011.

A. P. E. Rosiello, E. Kirda, C. Kruegel, and

F. Ferrandi. A layout-similarity-based approach for
detecting phishing pages. In Proceedings of the 3rd
International Conference on Security and Privacy in
Communication Networks, SecureComm, pages
454-463, Nice, 2007.

C. Whittaker, B. Ryner, and M. Nazif. Large-Scale
Automatic Classification of Phishing Pages. In In
Proceedings of the Network € Distributed System
Security Symposium (NDSS 2010), pages 1-14, San
Diego, CA, 2010.

WWW. HTML Tag Set. https:
//www.w3.org/TR/html-markup/elements.html.

G. Xiang, J. Hong, C. P. Rose, and L. Cranor.
Cantina+: A feature-rich machine learning framework
for detecting phishing web sites. ACM Trans. Inf.
Syst. Secur., 14(2):21:1-21:28, Sept. 2011.

Y. Zhang, S. Egelman, L. Cranor, and J. Hong.
Phinding Phish: Evaluating Anti-Phishing Tools. In
In Proceedings of the Network € Distributed System
Security Symposium (NDSS 2007), pages 1-16, San
Diego, CA, 2007.

Y. Zhang, J. Hong, and C. Lorrie. Cantina: a
content-based approach to detecting phishing web
sites. In Proceedings of the 16th International
Conference on World Wide Web, pages 639-648,
Banff, AB, 2007.

